Question Examples from Advance Information for Paper 2 (OCR MEI)

Proof

Prove, by counter-example, that each of the following statements is false.

a For all positive real values of
$$x$$
, $\sqrt[3]{x} \le x$. (2)

b For all positive integer values of
$$n$$
, $(n^3 - n + 7)$ is prime. (2)

a Given that
$$n = 2m + 1$$
, find and simplify an expression in terms of m for $n^2 + 2n$. (1)

b Hence, use proof by contradiction to prove that if
$$(n^2 + 2n)$$
 is even, where n is an integer, then n is even. (5)

Use proof by contradiction to prove that there are no positive integers,
$$x$$
 and y , such that $x^2 - y^2 = 1$.

For each statement, either prove that it is true or find a counter-example to prove that it is false.

a If a and b are irrational and
$$a \neq b$$
, then $(a + b)$ is irrational. (2)

(6)

b If
$$m$$
 and n are consecutive odd integers, then $(m+n)$ is divisible by 4. (3)

c For all real values of
$$x$$
, $\cos x \le 1 + \sin x$. (2)

a Show that if
$$\log_2 3 = \frac{p}{q}$$
, then

$$2^p = 3^q. (2)$$

b Use proof by contradiction to prove that
$$\log_2 3$$
 is irrational. (4)

 $\boldsymbol{c} \quad \text{Prove, by counter-example, that the statement} \quad$

"if a is rational and b is irrational then
$$\log_a b$$
 is irrational"

Use proof by contradiction to prove each of the following statements.

- **a** If n^3 is odd, where n is a positive integer, then n is odd.
- **b** If x is irrational, then \sqrt{x} is irrational.
- **c** If a, b and c are integers and bc is not divisible by a, then b is not divisible by a.
- **d** If $(n^2 4n)$ is odd, where *n* is a positive integer, then *n* is odd.
- e There are no positive integers, m and n, such that $m^2 n^2 = 6$.

Given that x and y are integers and that $(x^2 + y^2)$ is divisible by 4, use proof by contradiction to prove that

- \mathbf{a} x and y are not both odd,
- **b** x and y are both even.

a Prove that if

$$\sqrt{2} = \frac{p}{a}$$

where p and q are integers, then p must be even.

b Use proof by contradiction to prove that $\sqrt{2}$ is irrational.

Prove by contradiction that there is no greatest even positive integer.

[3]

Prove algebraically that $n^3 + 3n - 1$ is odd for all positive integers n.

[4]

Prove that the sum of the squares of any two consecutive integers is of the form 4k + 1, where k is an integer.

[4]

- **a** Prove that the difference of the squares of two consecutive even numbers is always divisible by 4.
- **b** Is this statement true for odd numbers? Give a reason for your answer.

Prove by contradiction that $\sqrt{2}$ is an irrational number.

Prove by contradiction that there are infinitely many prime numbers.

Parametric equations