Question Examples from Advance Information for Paper 2 (OCR MEI)

Proof

Prove, by counter-example, that each of the following statements is false.

a For all positive real values of x, Yr < x. ?)
b For all positive integer values of n, (n° —n+ 7) is prime. ?)
a Given that n=2m+ 1, find and simplify an expression in terms of m for n*+ 2n. )

b Hence, use proof by contradiction to prove that if (n” + 2n) is even, where 7 is an
integer, then n is even. ©)

Use proof by contradiction to prove that there are no positive integers, x and y, such that
2_ 2
x =y =1 (6)

For each statement, either prove that it is true or find a counter-example to prove that

it is false.

a Ifaand b are irrational and a # b, then (a + b) is irrational. ?)
b If m and n are consecutive odd integers, then (m + n) is divisible by 4. A3)
¢ For all real values of x, cosx <1 + sin x. ?2)

a Show that if log, 3 = 2 then
q

=131 @
b Use proof by contradiction to prove that log, 3 is irrational. @
¢ Prove, by counter-example, that the statement
“if a is rational and b is irrational then log, b is irrational ”
is false. ?)

Use proof by contradiction to prove each of the following statements.

a Ifn’ is odd, where n is a positive integer, then # is odd.

b If x is irrational, then \/; is irrational.

¢ Ifa, b and c are integers and bc is not divisible by a, then b is not divisible by a.
d If (n” — 4n) is odd, where n is a positive integer, then 7 is odd.

e There are no positive integers, m and n, such that m* —n*> = 6.

Given that x and y are integers and that (x*+ %) is divisible by 4, use proof by contradiction to
prove that

a x and y are not both odd,

b xand y are both even.
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a Prove that if
Ji-2,
q
where p and ¢ are integers, then p must be even.

b Use proof by contradiction to prove that V2 is irrational.

Prove by contradiction that there is no greatest even positive integer. [3]

Prove algebraically that /7 + 31— 1 is odd for all positive integers 7. [4]

Prove that the sum of the squares of any two consecutive integers is of the form 4k + 1,

where kis an integer.
g [4]

a Prove that the difference of the squares of two consecutive even numbers is always divisible
by 4.

b Is this statement true for odd numbers? Give a reason for your answer.

Prove by contradiction that v2 is an irrational number.

Prove by contradiction that there are infinitely many prime numbers.

Parametric equations
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